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SUMMARY 

In this work we develop a technique, based on the hodograph method, for the study of steady plane, viscous, 
incompressible constantly inclined MHD flows. 

The equation describing the diffusion of magnetic field is used to write the magnetic field vector in terms 
of the velocity vector field and the angle between the two vector fields. The hodograph method (and its mod- 
ifications) is applied to reduce the problem to that of determining the Legendre transform of the stream func- 
tion. The resulting partial differential equation is studied for several flow problems to illustrate the advantages 
of the theory. 

This paper also employs a similar approach as the above to study flows in the magnetograph plane. 

1. Introduction 

MHD plane flows are said to be constantly inclined if the angle between the velocity and the 

magnetic field vectors is constant throughout the flow region. Two special classes of  these flows 

are aligned, or parallel, flows and crossed, or orthogonal, flows; these have been extensively 

studied over the past two decades. Not much work seems to have been done for those constant- 

ly inclined flows which are not  necessarily aligned or crossed. These general constantly inclined 

flows were first investigated by Waterhouse and Kingston [ 1 ] when the fluid is inviscid and in- 

compressible with infinite electrical conductivity.  Chandna and Garg [2], Chandna and Toews 

[3] obtained several geometric results for such flows when the fluid is viscous incompressible 

and perfectly conducting. 

In the present paper the work in viscous, incompressible flows is extended with the objective 

of  obtaining some exact solutions. We employ the hodograph transformation, one of  the strong 

analytic methods, to find solutions. An excellent survey of  this method, with applications to 

numerous non-linear problems, has been given by Ames [4]. The hodograph method has been 

applied to parallel compressible MHD flows by Smith [5] and to viscous incompressible ortho- 

gonal MHD flows by Chandna and Garg [6]. 

The plan of  the paper is as follows: in Section 2 the basic flow equations are cast into a con- 

venient form for this work and Section 3 deals with the transformation of  the equations to the 

hodograph plane. Solutions in the hodograph plane are found in Section 4. In Section 5 we 

transform the flow equations to the magnetograph plane and discuss their solutions. 
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2 .  E q u a t i o n s  o f  m o t i o n  

The steady, plane flow of  a viscous, incompressible fluid of  infinite electrical conductivity is 

governed by the following system of equations: 

8u bv 
- -  + - -  = O ,  ( 1 )  
ax by 

( bU bU) bp Ib2U O2U I (bO 2 bill ) 
p u - -  + v  - -  + - -  =r; + --/.tH2 , (2) 

bx ~y bx \ ax2 by 2 ] ~)x by 

P bx + v  - -  = - - + - -  + u H 1  - , ( 3 )  
+ by ~ \ b x  2 by ~ bx b y  

u H  2 - /)H 1 =k, (4) 

bH 1 (3H2 
+ - -  = 0, (5) 

bx ay 

where u, v are the components of  the velocity field V, H~, H2 the components of  the magnetic 

vector f i e l d / / a n d  p is the pressure function; all being functions o f x , y .  In this system p, ~, g, 

are respectively the constant fluid density, the constant coefficient of  viscosity, the constant 

magnetic permeability. Furthermore, k is an arbitrary constant of  integration obtained from 

the diffusion equation curl(V x / / )  = 0; k is zero for aligned flows and non-zero in the case of  

non-aligned flows. 

Introducing the functions 

b v bu bH2 bH 1 1 
, j =  , h = ~  +p ,  (6) 

bx by 8x  by 2 p q2 
O 9 -  

where q2 = u 2 + v 2, the system of  equations (1) to (5) is replaced by the following system: 

bu by 
- -  + - -  = O, (continuity) 
bx by 

b w  Oh 
--y--- - p v co + IljH2 - 
ay bx 

beo ah 
~ - - - - -  - p u w + l ~ j H 1 -  , 

O x  by 

(linear momentum) 

uH2 - v H l  = k ,  (diffusion) (7) 

OH1 OH2 
+ - -  = O, (solenoidal) 

bx by 

by bu 
- co, (vorticity) 

bx by 
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OH2 OH1 

ax ay 
- j, (current density) 

of seven non-linear partial differential equations in seven unknowns u, v, H 1 , / ' / 2 ,  co, ]" and h as 

functions of x, y. System (7) has the advantage of being a system of first order whereas equa- 

tions (1) to (5) form a second order system. Martin [7] has successfully used such a reduction 

of order from two to one to study viscous non-MHD flows. 

We now consider constantly inclined plane flows and let ao denote the constant non-zero 

angle between V and H. The vector and scalar products of V and H, using the diffusion equation 

from (7), yield 

u H2 - v H I = q H sin ao = k ,  

u H1 + v H 2 = q H cos ao = k cot a o , 

(8) 

2 where H = X/H~ + H 2 . Considering these as two linear algebraic equations in the unknowns H~, 

//2, we solve these to express H1 and//2 in terms ofu  and v; i.e. 

k k 
H 1 = ~ ( c u  - 7)), H2 = --7 (cv + u), (9) qo q. 

where c = cot ao is a known constant for a prescribed constantly inclined non-aligned flow. 

Alternatively, one can solve (8) for u and v in terms of ill andH2 to get 

k k 
u = ~ (cH, +H2), v :  ~ (cH2 H1). (10) 

H "  1-1" 

We now distinguish between two types of approaches. First, equation (9) can be employed to 

eliminate functions HI and//2 from the system of equations (7). The unknown functions, to 

be determined, will then be u, v, h, co and j. Secondly, one can eliminate u and v from equa- 

tions (7) by using equations (10). One then obtains a system of equations to be solved for HI,  

//2, h, co and/as  functions o f x , y .  The first approach leads us to the study of flows, after hodo- 

graph transformations, in the hodograph plane. Likewise, the second approach leads to the study 

in the magnetograph plane. 

3. Study of flows in the hodograph plane 

Taking the first approach, functions H1 and H2 are eliminated from equations (7), by using 

equations (9), to yield the following system of equations: 

~u Ov 
- -  + - - = 0 ,  (11)  
~x Oy 

~co /lk 0h 
,7- y - ( c v + . ) j -  (12) 
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Oco /.tk Oh 
- -  puco+ (cu- v) j -  , 

,7 Ox - 7 oy 

lOu >],+ (v 2 - u 2 - 2cuv) . , - -  + (CV = - cu = 
t o y  ax J 

Ov Ou 
--co, 

Ox oy 

O l cv+u [ o l c u - v [  / 

[--U/- i-T-j- 

(13) 

+ 2 u v ) ~  0-~-u 0 v } = 0  (14) 
! Ox Oy ' 

(is) 

(16) 

We notice that the two equations (1 I) and (14) constitute a system of two equations in two un- 
known functions u(x, y )  and v(x, y). Having found u and v, functions co(x, y)  and/(x, y)  are 
determined from equations (15) and (16) respectively. However, equations (12) and (13) force 
restrictions on those possible solutions for u, v, co and j since the functions h(x, y), to be ob- 
tained from (12) and (13), must satisfy the integrability condition 02h/OxOy = 02h/OyOx. Once 
a solution of this system is known, the pressure function and the magnetic vector field are ob- 
tained from the definition ofh and equations (9) respectively. 

Let the flow variables u(x, y), v(x, y )  be such that, in the flow region under consideration, 
the Jacobian J = O(u, v)/O(x,y) satisfies 0 < [JI < oo. In such a case we may consider x andy as 
functions o fu  and v such that the following relations hold true: 

au Oy Ou Ox Ov Oy Ov Ox 
= J  - - S  , - - J  , = J  ( 1 7 )  

ax Ov '  Oy Ov Ox Ou Oy Ou 

Employing the transformation equations (17) in (11) to (16), the new transformed system of 
equations in tile hodograph plane is: 

Ox Oy 
- -  + - -  = O, ( 1 8 )  
0u 0v 

O(x, co) uk O(h, y) 
rlJ O(u,v) p v w + - ~  ( c v + u ) j = - J  O(u,v) (19) 

0(co,y) uk a(x, h) 
~J O(u,v) puco+--~ ( c u - v ) i = J  O(u,v) (20) 

( c u = - c v 2 - 2 u v )  Ou 3v + ( u 2 - v E + 2 c u v ) ~ ° x  + =0,  (21) 
l O v  -~u 

j ,~ 8__x! Ov Oy }= c o , O u  (22) 

i /u+cv ~ / c u - v ] .  oF-U-,, ) tx, - v - i  I j 
O(u, v) k ' 

J 
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where J=J(u ,  v) is given by 
- 1  

3I_~u i~y 3x ~Yu; 
S = (24) 

3v ~v 

Equation (18) implies the existence of a function • (u, v), called the Legendre transform of 
the streamfunction ~ (x, y)  defined by the continuity equation, such that [4] 

3q, 3~I, 
..... y ,  - x, (25) 

3u av 

and 

,I, (u, v ) =  vx - uy + ¢ ( x , y ) .  (26) 

We now eliminate x(u,  v) andy (u, v) from equations (18) to (24) by introducing qJ(u, v) as 
defined by (25) or (26). Equation (18) is identically satisfied and equations (19) to (24) are re- 
placed by the system of equations 

nY O(u,v) p v w + - - ~  v+u  / : J  ~(u,v) 

 (?vv ,4 
rlJ 3(u, v) + p u w  - - ~  (cu -- v ) j  = - J O(u, v) ' (28) 

v 2 - u  2 - 2 c u v  3u--- ~ +  2cu 2 - 2 c v  2 - 4 u v  auOv 

) 32~, 
+ 2 c u v + u  z - v  2 - - = 0 ,  

Ov 2 

[ az'I ' a2q~ ] 

siT+ 

(29) 

(30) 

t , c.-v) J ~v q2 / 
s a(u, v) + a(u, v) = - ~ ,  (31) 

~.02,i, 02,i, (02,1, ]21-1 
(32) 

m six unknowns ~, h, co, j and J as functions of u, v. Finally, we introduce the polar co-ordi- 
nates (q, O) in hodograph plane, i.e. (u, v)-plane, defined by the relations 
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u = q cos 0, v = q sin 0, (33) 

where 0 is the inclination of vector field V, and note that 

and 

a a sin 0 a a a cos 0 a 
- -  =cos0 , - s i n 0 - -  + - -  
au aq q a0 av aq q a0 

a(F, G) a(F, G) a(q, 0) 1 a(F, G) 
- -  - - -  - ( 3 4 )  
a(u, v) a(q, 0) a(u, v) q 0(q, 0) 

for any continuously differentiable functions F(u, v) and G(u, v). 
Transformation of equation (29), by use of equations (33) and (34), to the new independent 

variables q, 0 (after considerable simplification) yields a second-order linear partial differential 
equation satisfied by • (q, 0) = • (q cos 0, q sin 0) given as 

a2~ 2c a2CP 1 a2~ 1 aCp 2c aCP (35) 
- - +  - -  - 0 .  aq 2 q aqaO q2 aO 2 q aq q2 aO 

Furthermore, by using (33)and (34) in (30), (31) and (32), equations for co, ] and J as functions 
of q, 0 are: 

I -a2~ 1 a2~ 1 a_a_~_q~ t 
co=J  L-- ~ +  q2 a0 T +-q ' (36) 

Id-c_ a2cI , j = -~ aq2 q 2 ~ + q - - ~ q  ] 2-~q q--~- , (37) 

j=q4 aq ---'-~ lq a T  + - -~ -J -  - q - - ~ q f  l (38) 

It is important to note that not all solutions of (35) can define feasible flow configurations. 
Allowable forms of C~ (q, 0) are further restricted by the integrability condition on h, obtained 
through equations (27) and (28). 

4 .  S o l u t i o n s  i n  t h e  h o d o g r a p h  p l a n e  

A general solution of (35) seems to be impossible and we therefore examine some special forms 
of solutions. 
(a) Assume a solution of(35) in the form 

(q, 0) = z__ ° f .  (o) q". 
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Substituting this into (35) and equating like powers of  q, we find that, for c 4= 0 (non-orthogo- 

hal flows), 

Up(q, O)=Ao e2c° +Bo +{A1 cos0  +B~ sin 0}q  

+ { A 2 e - Z C O + B 2 } q 2  + ~ , ,  an° ~ Xn°, n (39) 
n=3 CtAn e + B;n e ~ q , 

where 

X n = - c(n - 1) _+ X/(c2 + l ) (n  2 - 2n) +e  2 

and Aj, B i (J'/> 0), are arbitrary constants. Various flow configurations are obtained by setting 

some of  the coefficients in the series for Up (q, 0) equal to zero. 

(i) Vortex flow: Choosing Ao = Bo = A2 = 0 and Aj, Bj for j >~ 3 all zero we at tempt Up (q, O) = 
B2q 2 + (A ~ cos 0 + B~ sin 0)q where B2 4= 0. In this case the streamlines are given by 

(x B I )  2 + 0 '  +A1)  2 =constant  

and 

(ii) 

j=O,  co=B~ 1, 

P = O { (x  - B1 )2 + (y + A 1 )2 }/8B22 + constant, 

u = - ( y  +A~) /ZB2,  v = ( x - B a ) / 2 B 2 .  

Radial flow." This type of flow requires that Up (q, 0) be a function of 0 only, hence, we try 

Up(q, O) = Ao e2c° . 

From equations (36), (37) and (38) 

q4 e-4eO q2 e-2CO k(c 2 + 1)e-2Co 

J = -  4e 2A2 , c o - -  Ao ' / = e 2Ao  

Using these, and eliminating h(u, v) from equations (27) and (28) finally yields 

r?e - 2 c 0  { ( 5 e  2 - -  1) cos 20 -- 6C sin 20}q 4 -- pcAoq  4 - clak 2 (c 2 + 1) = 0. 

Since q and 0 are independent variables, Up (q, 0) = Ao e2c° is not a possible flow solution. 

(iii) Other flows: Various other combinations of  terms may be at tempted,  many leading to 
non-admissible forms for Up, e.g., 

UP(q, O) = {A2 e-2cO +B2 }q2, 
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eventually leads to A 2 = 0 (example (i)) or c = 0 (orthogonal, vortex flow). 

• (b) Returning to equation (35) assume now a solution of  the form 

~(q ,  O) = F(q)  + C(O). 

Substituting this form into equation (35) and separating variables gives 

A +De2CO ~(q ,  0) =A In q +Bq 2 + - -  0 +E 
c 

(40) 

where A, B, D, E are arbitrary constants. Again, this solution is further restricted by equations 

(27) and (28). 

+A 
(i) Spiralflow: Take ~(q ,  0) =A In q 0. 

c 

From equations (36), (37), (38), (27) and (28) 

co=O, j =  2kc/A, 

lak:c 2 pA2(c  2 + 1) 
p _ _ _ _  (x 2 + y 2 )  + constant. 

A 2 2c2(x 2 +y2)  

To determine the streamlines we calculate 

x -  m Atu } } - + V  , y - - -  - -  - - -  - - U  . 

aV U 2 + v 2 au u 2 + v 2 

Taking the ratio x /y  and then solving for o/u, the streamlines are the solution of  

dy v y + cx 

dx u x - cy 

Hence the equation for the streamlines is 

ln(x 2 +y2)1/2  1 y 
= -  tan -1 - + constant, 

c x 

representing a spiral flow with constantly-inclined circular magnetic lines. 

(ii) As a second example in this section we try 

C~(q, O) =A In q + Bq 2 O. 
c 

Then equations (36), (37) and (38) give 

J= 
c 2 q4 

4B2c2q 4 _ (c 2 + 1)A 2 ' 

w = 4B J,  j = -  
2 A k ( c  2 + l ) J  

cq 4 
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Using these, and eliminating h(u,  v) from equations (27) and (28) yields an expression of the 

form 

5 
~, pn q2n+l  = 0 ,  

n = l  

implying that Pn =- 0, n = 1 . . . . .  5. In particular P4 = 0 implies 

~ A 3 B  4 = O. 

Since A = 0 or B = 0 lead to previously discussed examples, the interesting case here is the in- 

viscid problem (7 = 0). With r/= 0, Pi =- 0 for i = 1, 2, 3, 5 all imply that 

B ~  - -  

2kc 

Following the previous example we find that the streamlines are the solution curves of  the O.D.E. 

dy X 2 _ y2  _ 2cxy  + x/r 4 8ABr  2 - 1 6 A 2 B 2 / c  2 

2 - -  + c y 2 - x y  
c 

These streamlines are spirals, previously discussed by Waterhouse and Kingston [ 1 ] in their clas- 

sification of inviscid incompressible flows. We see that these types of  spirals cannot exist in the 

viscous case. 

5. Study of flows in the magnetograph plane 

Analogous to the work in Section 3, u and v can be eliminated from the governing system of  

equations by using (10). Introducing q5 (H1, H2), the Legendre transform of the magnetic flux 
function dp(x,y),  by 

0 ~  0 ~  
- - y ,  - x  (41)  

0H 1 0 g  2 

and polar co-ordinates (H, t3) in the magnetograph plane, a necessary condition for q5 (H, t3) ; 
qS(Hcos ~, Hsin fl) to define an admissible flow solution is that it be a solution of  

02~ 02~  02~  0 ~  0 ~  
H 2 - -  2 c H - -  H - 2 c - - = 0 .  (42) 

0H 2 + 0H0/3 013 2 OH 013 

This equation is the magnetograph counterpart  of  equation (35). As in Section 3, we find 

1 02 ~ 1 0U~ -q 
] = J * ~ 3 2 d / ,  + - -  + (43) 

/ 0 / 4  2 /4 2 0/3 2 H - ~ _ ]  ' 
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' a 2 ~  + H - (44) 
k J* 

2 _ _  H + - - H - -  (45) 
OH 2 OH a32 I a3 a3aH 

The functions ~ (H, 3) satisfying equation (42) are again further restricted by an integrability 

condition on h(H~, H2) imposed by the momentum equations. 

Equation (42) is identical to equation (35) if  we replace c in (42) by - c .  Hence solutions of  

(42) can be immediately written down as clone in section 4. We investigate two examples in the 

magnetograph plane. 

(i) ~ ( H ,  3) = B 2 / ~ .  In this case the magnetic lines are concentric circles and the streamlines 

are spiral inclined at a constant angle So to the magnetic lines. This example is the same as that 

of  Section 4, example (b)(i). 

(ii) ~(H, 3) = A In H - A 3 .  Here we obtain the vortex flow described in the first example of  
o 

Section 4. The magnetic lines are spiral and the streamlines are concentric circles. 
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